1st Training Workshop, Wroclaw, 25-26 September 2006

VIATRAZ2: A Model Transformation Framework
Introduction & Tool Demonstration

Imre Kocsis
Balazs Polgar

Budapest University of Technology and Economics
Department of Measurement and Information Systems
Fault Tolerant Systems Research Group

&3

DESEREC Information Society

Dependable Security by Enhanced Reconfigurability Technologies

-Talk Outline

1. Introduction, motivation

2. VIATRAZ2

3. Qualitative Fault Modeling, Model Transformations
& Resilient Systems

4. Tool demonstration

@ DESEREC, 1st Training Workshop

Introduction

@ DESEREC, 1st Training Workshop

-Introduction

What are ‘model transformations’?

n Model Driven Engineering:

as primary engineering artifacts throughout
the engineering lifecycle.’

N Best known initiative: OMG

N . a collection of notions of a given domain
For engineering purposes: precisely defined modeling languages
Metametamodels: the languages for model language definition

We all know some of them
1 MOF for UML

1 XML Schema for XML languages
1 ...

@ DESEREC, 1st Training Workshop @

-Introduction

What are ‘model transformations’?

Transformations of models of a given metamodel to models of another
metamodel

Less cryptically: UML to C++ code, EJB to RDB, MIB to CIM, ...

N Supporting frameworks reaching industrial strength nowadays
language definitions, efficient

N For motivation: some applications of model transformations,
extensions to resilient system design

PIM — PSM — code mapping in MDA

‘Hidden’ formal methods

Model transformations in dependability workflows
Meta-level fault and dependability mechanisms

@ DESEREC, 1st Training Workshop

~Traditional approach vs. MDA

Design of an IT system Visual programming

Textual Behavioral Computing / Platform
Ce- : Independent
specification model
Modeling Mapping
System Architectural piatform specific
model model
Programming Code generation

Implementation Implementation

@ DESEREC, 1st Training Workshop @

-The OMG Model Driven Architecture: Automated Mappings—

Sys. model Sys. PSM
code

+ +
TR eneration
mOdel Of transform. TIVOll SV J
(transform.)
supervision model

(PIM)

Tivoli

configuraion

MDA for supervised architectures /
FOFdEé model based system management: ity
active research at FTSRG ?
(IBM Faculty Award)

-Hidden Formal Methods

System design

Mathematical analysis

Automated
model generation

Mathematical
model

v

Analysis

Back-annotation

Model derivation Tl Code generation

DESEREC, 1st Training Workshop

-Hidden Formal Methods - Example

System design Mathematical analysis

Automated
model generation

Static error
propagation model

Pessimistic
damage
Back-annotation confinement

Model derivation Tl Code generation region analysis

@ DESEREC, 1st Training Workshop @

-Model Transformations in Dependability Workflows

DECOS FP6 IP Specification
/\
@arameteriz Domain \formation) (Optimization)
specific

| | languages o | o)
[Simulati encouraged/%kl (Partitioning
_/ |

C Verification

(Scheduling)

(Commumca >

\)yll 1w

Model Driven

Developmen
One ‘lingua éhavioral model‘
franca’ modeling '

Enabling

Model transformations played a crucial Analysis

enabler role for architecting the

dependability workflow

DESEREC, 1st Training Workshop @

-Meta-Level Fault Mechanisms

n F&UltS and the errOr prOpagatlon Transltlve closure
characteristics are typically largely Groph |
technology-agnostic and architectural S
issues f
x'/ N
N Thus, can be formulated for classes of -\ BN
(sub)systems in a generalized way I — \\\ | N
Key factors: platform descriptions e N ;
. . . - T w
(PSM), analysis-domain ontologies and 7 N1
(meta)transformations) ;% |
y . *i\ |)
/ Explat IIIH.,I r\\
N New research direction; unexplored 7 X f\ N
s dekdn | / Hﬁ":iplzpmpag_-.um] Eagariy |
area S0 Rk -_"i:|||-| IIIIIII sy \\\
|I \l\'l e ‘x\""-\-\.‘_ n:ge
[— |
e NN S |
|
‘ r.1:—:¢|-::-: HiW

@ DESEREC, 1st Training Workshop

-Model Transformation at FTSRG——

Analysis of Business Process
Models

nVerification by MC

NnFault simulation

nSecurity analysis
(Bell-LaPadula)

NBPEL generation
e|BM Faculty Award

SOA

nPerformance & Availability analysis
nConfiguration generation

nService Analysis and Deployment
e SA Forum + SENSORIA IP

@ DESEREC, 1st Training Workshop

Tooling: VIATRAZ2

Embedded Systems

NPIM & PSM for dependable
embedded systems

NPIM & PSM model store
NPIM-to-PSM mapping

NPIM & PSM validation
nMiddleware code generation
eDECOS IP

Other

nDesign and transformation of
domain specific languages

nModel-based generation of
graphical user interfaces

@0

VIATRAZ
Release 2

@ DESEREC, 1st Training Workshop

-Qutline

Introduction
Features
The VIATRA2 Framework

Core concepts
Visual and Precise Metamodeling: VPM
Transformation definition & execution
Code generation
Importers

GUI
VIATRAZ2 as an application component

DESEREC, 1st Training Workshop

-VIATRAZ2

sual Automated model nsformations

N a general-purpose model transformation engineering
(transware) framework

N that will support the entire life-cycle for transformations
specification
design
execution
validation
maintenance

N within and between various modeling languages

@ DESEREC, 1st Training Workshop

~-Features

Feautures of the VIATRAZ2 R2 Framework

N Precise and visual description of source and target modeling languages
(metamodeling)

N Precise and visual specification of transformation rules (graph
transformation)

N Back-annotation / reverse transformations

N Model transformation engine
(automatic generation of target models)

Ongoing research/development:

n Automated generation of platform specific transformers
N Proving correctness and completeness of transformations

DESEREC, 1st Training Workshop @

_The VIATRA 2.0 framework

Manually written
native program

_The VIATRA 2.0 framework

VPM Metamodeling Core

_The VIATRA 2.0 framework

Eclipse framework

VIATRA 2.0 Model Transformation Plug-in

VPM Metamodeling Core

_The VIATRA 2.0 framework

Delayed by QVT
EUnder development I finalization
\ \ Eclipse framework /
\(IA1\RA 2.0 Model Transformation PlQ-in

VPM Metamodeling Cor

Native
XForm Plugin

-VIATRAZ2 and Eclipse

Eclipse quick facts:

I
eclipse

n Component-based (‘plugins’)
N Free & Open Source

N Multi-Purpose Development Framework
IDE, thin client, application, ...
A true platform in itself

n THE platform for tool integration today

VIATRAZ: an official Eclipse Generative Modeling Tools
project

N Realization: a set of Eclipse plugins

N Integration with other Eclipse-based solutions is supported
N Extendability & extension mechanisms

N (soon to be updated)

@ DESEREC, 1st Training Workshop @

http://www.eclipse.org/gmt/

-Transformation development

Metamodels

Graph transformation VRSB Transformation trace,
development & : :
rules : debug information
testing

Transformation
control structure

Transformation design time

Plugin generator

Transformation runtime

@ DESEREC, 1st Training Workshop @

-Models, Model Manipulation and the ‘Last Mile’

Model management:

n Model space: Unified, global view of
models, metamodels and transformations

Hierarchical graph model
Complex type hierarchy
Multilevel metamodeling

Model manipulation and transformations:
Integration of two mathematically precise,
rule and pattern-based formalisms

n Graph patterns (GP): structural conditions
n Graph transformation rules (GT): elementary xform steps
N Abstract state machines (ASM): complex xform programs

Code generation:
n Special model transformations with
n Code templates and code formatters

@ DESEREC, 1st Training Workshop

-Metamodeling Approach

VPM: Visual and Precise Metamodeling

Simple, visual metamodel desing
Precise semantics
Multi-level metamodeling: arbitrary meta-level depth

N
N
N
N Simultaneous support of multiple modeling languages

Technology spaces

| model J model 2

SPIN
VPM-based MM MOF-based MM MOF-based MM

MOF model space

VPM model space

DESEREC, 1st Training Workshop

-VPM: Visual and Precise Metamodeling

KMOF association + attribute\

* Unidirectional
e Binary

et

1 - from

Relation
o jsAnySource Boolean ModelElement
o js&ryTarget | Boolean
o jsAggregate ; Boolean
o multiplicity - Multiplicitykind *

- instanceof

o name ; String

- cantains

/MOF class + package

_ Entity

+ ObJeC_t o value ; String
e container

e classifier

e constant

\»objectinstance ~/

@ DESEREC, 1st Training Workshop @

-VPM: Visual and Precise Metamodeling

- supertypeof

Enheritance /
1 - from

Relation
o jsAnySource Boolean
o js&ryTarget | Boolean
o jsAggregate ; Boolean
o multiplicity - Multiplicitykind

- instanceof

- cantains

Instantiation
(meta levels)

Entity
o yalue ; String

\ Containment hierarchy

VTML: VIATRA Textual Metamodeling Language

DESEREC, 1st irairirg vvorksriop

-Example: Ecore Metamodel

entity(emf) {
entit ecore\i | :l
— y(ecore) { Containment

A entity('Classifier);
) Fay . entity('Class’);
Relation entity('Datatype");
relation('structuralFeature’, 'Classifier’,
'Classifier");
relation(‘attribute’, 'Class’, 'Datatype");
_ P relation(‘reference’, 'Class’, 'Class’);
E— relation('many_to_one', 'Class’, 'Class');
‘\‘ relation('many_to_many', 'Class', 'Class’);
supertypeOf('Classifier’, 'Class');

17 RrAS supertypeOf('Classifier', '‘Datatype’);
“ supertypeOf('structuralFeature’, 'attribute');
supertypeOf('structuralFeature’, 'reference’);
supertypeOf('reference’, 'many _to_one');
supertypeOf('reference’, 'many_to_many');

Datatype N

Entity

Inheritance }

@ DESEREC, 1st Training Workshop @

—Example: UML Metamodel as Instance of Ecore

[I nstanceoﬂ\

tvpe : many_to_one

ModelElement : Class

Classifier : Class

PrimitiveDataType : Class

Attribute : Class

4'___|.E|tlzrs ! many_to_many |_—_—

Association : Class

||:|5I: g man';.f_tcu_nne| :

\c ' many_to_one |

Class : Class

[Metamodel
specific types

DESEREC, 1st Training Workshop

Import emf;

entity(uml_class) {
entity(metamodel) {

ecore.'Class'('ModelElement);

ecore.'Class'('Classifier");

supertypeOf('ModelElement','Classifier');

ecore.'Class'('Class') {
ecore.attribute(name, 'Classifier', 'String’);
ecore.attribute(isPersistent, 'Class’, '‘Bool');

}
supertypeOf('Classifier’, 'Class’);

ecore.many_to _one(parent, 'Class', 'Class’);

ﬁ ecore.many_to_many(attrs, 'Class’,
IA M ;
|parent :W/ }

}

&

Models, Model Manipulation and the ‘Last Mile’

Model management:

n Model space: Unified, global view of
models, metamodels and transformations

Hierarchical graph model
Complex type hierarchy
Multilevel metamodeling

VTML

[Architecture ready to)
integrate alternative

Model manipulation and transformations:
Integration of two mathematically precise,
rule and pattern-based formalisms

n Graph patterns (GP): structural conditions

n Graph transformation rules (GT): elementary xform steps
N Abstract state machines (ASM): complex xform programs

transformation
languages

(via new interpreters)

Code gene Distinguishing feature:\
N Special mode Metatransformations

(rules that manipulate
rules as models)

DESEREC, 1st Training \oweswes

n Code template

Ongoing: I

declarative
transformations

(description logic,
QvT) ,J:)

-Graph patterns Pattern definition

Graph Pattern pattern brother(X,B)

n Structural conditions that have to be —

fulfilled by a part of the model space mq
P1:person i P2:person

Graph pattern matching

: 1 X: Person | F B: Man }.
n A model (i.e. part of the model space) { bmermers oS
can satisfy a graph pattern, check = -B‘E {parent
N If the pattern can be matched to a : f - s
: ETIr sxtting
subgraph of the model : ACHIAY
! pare— | Iastname.St&?mg mother

mqé']'mother ﬁ refines

Gyozo:Man [l Maria:Woman

I
: .@Sbi f2:-father I 1 |
Man 1:father Women2:mather

"
-
u
L)
.
J
«
-

+{ Daniel:Man Gergely:Man =
“‘o .-.-“A A’ ’

Instance Model
DESEREC, 1st Training Workshop

n Note that we omit here the
‘fine detalil’ (recursion, OR-patterns,
neg-pattern hierarchy,..)

wife

-Graph Transformation Rules

precondition pattern postcondition pattern

Ihs(M,W,F1, MB1,F2,MB2) rhs(M,W,F1,MB1,F2 MB2,F)
F1: Family F2: Family — F1: Family F2: Family
| I Precondition
MBl:m\eilmbers MBZ:m\ei/mbers plfo_lEIeSm M: Man W-Woman
M: Man W:Woman A A
: . MB1:members MB4:members

d | F: Family —I

miin min

Three different kinds

n LHS + RHS

n LHS + actions (ASM, follows)

n Merged LHS-RHS (new, del annotations)

@ DESEREC, 1st Training Workshop Gi}

Postcondition
pattern
RHS

-Abstract State Machines

ASM: high-level programming forall X below people.models,

language B below people.models
with find brother(X, B) do seq {

nControl structure for xform print(name(X) + "->" + name(B));

nintegrated with GT rules)
Exam p|€S let X = people.models.Varrol.Daniel,
_ Y = people.models.Gyapayl.Szilvia,

N update location = term; F = undef, F2 = undef in

n parallel {...} / seq {...} choose Z below people.models

N let var = term in rule; apply marry(X, Y, F) do seq {

N if (formula) rulel; else rule2; rename(F, "Varro2®);

n iterate rule: move(F, people.models);
. iterate

n forall/choose variables

with formula do rule: choose M below people.models,

_ ’ W below people.models

n forall/choose variables apply marry(M, W, F2) do

apply gtrule do rule; move(F2, people.models);

@ DESEREC, 1st Training Workshop @

-Models, Model Manipulation and the ‘Last Mile’

Model management:

n Model space: Unified, global view of
models, metamodels and transformations

Hierarchical graph model
Complex type hierarchy
Multilevel metamodeling

Model manipulation and transformations:
Integration of two mathematically precise,
rule and pattern-based formalisms

n Graph patterns (GP): structural conditions

n Graph transformation rules (GT): el

_ Automatically
n Abstract state machines (ASM): co

transformed to VTCL

Code generation:
n Special model transformations with
n Code templates and code formatters

@ DESEREC, 1st Training Workshop

-Code templates

Code generation template printClass(in C) =
Code templat ¢
nL.ode templates public class $C {
NnCode formatters #(forall At, Typ with attrib(C,At, Typ) do seq{)
private $Typ $A€L;
#(3)
Code templates }

NText block with references to GTASM }
patterns, rules

nCompiled into GTASM programs with 7/ Senerated

rule printClass(in C) = seq {

prints _ print("public class " + C + "{");
=Velocity templates forall At, Typ with attrib(C,At, Typ)

do

seq {

Code formatters print("private " + Typ + " " + At +
NnSplit output code into multiple files "))
NnPretty printing print("}");

}

DESEREC, 1st Training Workshop Gi}

VIATRA Importers

The step from

Model import modules concrete to abstract
syntax!

n Specific to a tool version

Eclipse plugins

‘rEase of extendability
was of priority

N
n Can be easily customized, U
n (small and easy to

Can be installed/uninstalled separate fro
framework

use API) .

UML 1.x

N Importers for
IBM Rational Rose 2002
IBM Rational XDE 2003
Sparx Systems Enterprise Architect 4.0

UML 2.0
n New metamodel
n Importer for Rational Software Architect 6.0

@ DESEREC, 1st Training Workshop

~-Eclipse-based GUI

& lava - DECOS PIM Domain Specific Editor - Eclipse SDK & |E |5i
File Edit MNawvigate Search Project Bun PIM Editor Sample Window Help

JF?"L@'_I Jﬁ"GT%‘J@f@‘Jlg‘#JJJ'J‘] T E’ﬁhava

r y
& *DECOS PIM Domain Specific Editor 23 T

Massage

Mmessage
dependahility

in

operating mode

Datastream

Daka Stream
dependahility

in

operating mode

Job Resource DAS \
‘ Graphical editing for
3o b o domain specific
dependability dependahbility dependability

in
operating mode

in
operating mode

in
operating mode

Operatingiviode Operatingtode Operatinghade Dperatinghods |Operatinghode solution under
Message Data Stream Job Fesource DAS
Dependability Dependability Dependability Dependability Dependability

languages — isolated
examples, generic

K development

Functionality | Dependability PerFDrmance|.ﬁ.ssertiDns, u:u:unstraintsl

‘Wiatra R.2 Frameworks |

FEL i ~—~ =
i EENE =

L

£l Properties &3 5 }:b - = 5
Property | value |

Failure Mode

name Speedapture_Dependability

redundancy Degree
safety inkeqrity level

2

@ﬁ"* |

|| 1mofzeim | J|

-VIATRA as an Application Component

“VIATRA application” “II

bound PI

PIL- SCADE
type map

NnCustom Ul above the general

framework
NnContains more transformaton = ——_—___ <

. . _(FEaSIbIh'[y check)
descriptions and metamodels]

. PSM mapping process Tasks
NThe control flow of _transformatlons = ot e
can depend on user input — SelectPIL anguage [¢
B PIM-PSM type mapping

nExample: complex PIM-PSM |

. Message protocol definition
mapping - >

[[

\ 4
A

22?2

=N
@ DESEREC, 1st Training Workshop @

Qualitative Fault Modeling,
Transformations and Resilient
Systems

DESEREC, 1st Training Workshop

-Qualitative fault modeling

Basis: Architecture design

Metamodel-based fault modeling

n UML General Resource Model (GRM):
(active, passive, protected etc.),
Usage scenarios

n Operational faults are considered
n Faults are introduced here systematically

Common cause failures:
N Introduced by resource sharing

DESEREC, 1st Training Workshop

-Applications

Origins: mid-nineties (York, TUB)
n A few qualitative values (good, faulty, early, late)

Applications:

N industrial models

n railway interlocking systems
N e-Business processes

Experiences:
n effective both in and (as briefly follows)

DESEREC, 1st Training Workshop @

—Basic idea of qualitative fault modeling —

Erroneous run

‘

QUALITATIVE MODEL
Qualitative run

Equal

Basic idea;:

n keep only, whether the actual
and reference values are
identical

N non-deterministic modeling
IF-THEN-ELSE & CHOOSE

Design

n frequently incomplete
specification

N preliminary estimation of fault
| error effects

f Analysis

N complexity problems
interpreted ~ 10120
uninterpreted ~ 101600

Different

Equal

DESEREC, 1st Training Workshop

Fault Modeling by GRM
Part of a UML Profile

Model of the inter-actions
with resources via GRM

Insertion of (qualitative)
faults at the resources

Error propagation
through the scenarios

Qualitative fault modeling
IS tried & tested —

DESEREC, 1st Training Workshop

Architecture design

Class1

-attr_11::qualitative : Classl = goodl

+op1()::qualitative()

T

Class?2

-attr_12::qualitative : int = good

+op_21()::qualitative()

1

«usIes» «usles»
I ¥
I Resources (GRM) I
Resource
Resource?
Resource_manager

-ctrl

-reacts
i Resource_instance (state good/faulty) ™~

‘%ault selection and actlvatlon

Fault injector

~Analysis of error propagation

Extension of the architectural model:
fault effects + error propagation rules

Checking high-level (abstract) operation
In the presence of anticipated faults
(fault simulation)

Estimating system properties:

n of fault tolerance techniques
N : of faults

n Potentially catastrophic fault effects

DESEREC, 1st Training Workshop

—Dependability analysis

Basis: Architecture design (PSM)

Quantitative reliability/availability analysis:
n Comparison of alternatives
N Elimination of bottlenecks
N Sensitivity analysis

Qualitative dependability analysis:
N Rule-based prediction of faulty behavior

Design patterns for dependability
(redundancy management)

DESEREC, 1st Training Workshop

—Formal verification of behavior

Basis: Behavioral model (control flow)

n Complex control algorithms
n Event driven, asynchronous oper
® Exhaustive testing is infeasible

Classical reachability analysis:

n Temporal logic
(general and application-specific

Additional improvements:

ation

requirements)

N techniques
(handling large state spaces by

Conclusion: many (classic)
V&V activities meaningful in
the DESEREC context; to the
least tool & process integration
can benefit from transformation

DESEREC, 1st Training Workshop

support

Live Tool Demonstration

DESEREC, 1st Training Workshop

