
DESEREC
Dependable Security by Enhanced Reconfigurability

VIATRA2: A Model Transformation Framework
Introduction & Tool Demonstration

Imre Kocsis
Balázs Polgár

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Fault Tolerant Systems Research Group

1st Training Workshop, Wroclaw, 25-26 September 2006

2 DESEREC, 1st Training Workshop

Talk Outline

1. Introduction, motivation

2. VIATRA2

3. Qualitative Fault Modeling, Model Transformations
& Resilient Systems

4. Tool demonstration

3 DESEREC, 1st Training Workshop

Introduction

4 DESEREC, 1st Training Workshop

Introduction
What are ‘model transformations’?

n Model Driven Engineering:
4 ‘The systematic use of models as primary engineering artifacts throughout

the engineering lifecycle.’

n Best known initiative: OMG Model Driven Architecture

n Metamodel: a collection of notions of a given domain

4For engineering purposes: precisely defined modeling languages

4Metametamodels: the languages for model language definition

4We all know some of them
l MOF for UML
l XML Schema for XML languages
l …

5 DESEREC, 1st Training Workshop

Introduction
What are ‘model transformations’?

n Model transformations
4Transformations of models of a given metamodel to models of another

metamodel
4Less cryptically: UML to C++ code, EJB to RDB, MIB to CIM, ...

n Supporting frameworks reaching industrial strength nowadays
4Mathematically precise language definitions, efficient execution
4VIATRA2

n For motivation: some applications of model transformations,
extensions to resilient system design
4PIM – PSM – code mapping in MDA
4 ‘Hidden’ formal methods
4Model transformations in dependability workflows
4Meta-level fault and dependability mechanisms

6 DESEREC, 1st Training Workshop

Design of an IT system

Textual
specification

Implementation

Behavioral
model

Implementation

System
model

Visual programming

Programming

Modeling

Traditional approach vs. MDA

Code generation

Architectural
model

Mapping

Computing / Platform
Independent

Platform Specific

7 DESEREC, 1st Training Workshop

The OMG Model Driven Architecture: Automated Mappings

Common Model Driven Development WF – modern dev. tools

PI UML
model

EJB UML
model

.NET UML
model

For dev: known to reduce cost and improve quality
Then why not MDD with supervision planning?

Sys. model
+

model of
supervision

(PIM)

Sys. PSM
+

Tivoli SV
model

Tivoli
configuraion

MDD adds
analyzability!

MDA for supervised architectures /
model based system management:

active research at FTSRG
(IBM Faculty Award)

8 DESEREC, 1st Training Workshop

xforms

Hidden Formal Methods

(Semi-)formal
specification,

system
model

Implementation

System design

Mathematical
model

Automated
model generation

Analysis

Mathematical analysis

Back-annotation

Code generationModel derivation

9 DESEREC, 1st Training Workshop

xforms

Hidden Formal Methods - Example

Qualitative
fault

model:
extended

engineering
model

Implementation

System design

Static error
propagation model

Automated
model generation

Pessimistic
damage

confinement
region analysis

Mathematical analysis

Back-annotation

Code generationModel derivation

10 DESEREC, 1st Training Workshop

Model Transformations in Dependability Workflows

DECOS FP6 IP

TransformationTransformation

Design
modell

Design
modell

Communication
synthesis

Communication
synthesis

Behavioral modelBehavioral model

Implementation
& testing

Implementation
& testing

Hardware
synthesis

Hardware
synthesis

Software
synthesis
Software
synthesis

SimulationSimulation

ParameterizationParameterization

VerificationVerification

PartitioningPartitioning

OptimizationOptimization

SchedulingScheduling

SpecificationSpecification

Model Driven
Development

One ‘lingua
franca’ modeling

language
possible

Enabling
Analysis

Domain
specific

languages
encouraged

Model transformations played a crucial
enabler role for architecting the

dependability workflow

11 DESEREC, 1st Training Workshop

Meta-Level Fault Mechanisms
n Faults and the error propagation

characteristics are typically largely
technology-agnostic and architectural
issues

n Thus, can be formulated for classes of
(sub)systems in a generalized way
4Key factors: platform descriptions

(PSM), analysis-domain ontologies and
(meta)transformations

n New research direction; unexplored
area

12 DESEREC, 1st Training Workshop

Model Transformation at FTSRG

Analysis of Business Process
Models
nVerification by MC
nFault simulation
nSecurity analysis
(Bell-LaPadula)
nBPEL generation
èIBM Faculty Award

SOA
nPerformance & Availability analysis
nConfiguration generation
nService Analysis and Deployment
èSA Forum + SENSORIA IP

Embedded Systems
nPIM & PSM for dependable
embedded systems
nPIM & PSM model store
nPIM-to-PSM mapping
nPIM & PSM validation
nMiddleware code generation
èDECOS IP

Other
nDesign and transformation of
domain specific languages
nModel-based generation of
graphical user interfaces

Tooling: VIATRA2

13 DESEREC, 1st Training Workshop

VIATRA2
Release 2

14 DESEREC, 1st Training Workshop

Outline

Introduction
Features
The VIATRA2 Framework
Core concepts

4Visual and Precise Metamodeling: VPM
4Transformation definition & execution
4Code generation
4Importers

GUI
VIATRA2 as an application component

15 DESEREC, 1st Training Workshop

VIATRA2

VIATRA =
VIsual Automated model TRAnsformations

n a general-purpose model transformation engineering
(transware) framework

n that will support the entire life-cycle for transformations
4specification
4design
4execution
4validation
4maintenance

n within and between various modeling languages

16 DESEREC, 1st Training Workshop

Features

Feautures of the VIATRA2 R2 Framework

n Precise and visual description of source and target modeling languages
(metamodeling)

n Precise and visual specification of transformation rules (graph
transformation)

n Back-annotation / reverse transformations
n Model transformation engine

(automatic generation of target models)

Ongoing research/development:
n Automated generation of platform specific transformers
n Proving correctness and completeness of transformations

17 DESEREC, 1st Training Workshop

The VIATRA 2.0 framework

Design toolchain

Manually written
native program

Native
Source model

Native
Target model

18 DESEREC, 1st Training Workshop

VPM Metamodeling Core

Design toolchain

Source
model

Source
metamodel

Target
model

Target
metamodel

Xform. rules
(UML/QVT)

Native
Source model

Native
Target model

The VIATRA 2.0 framework

19 DESEREC, 1st Training Workshop

Eclipse framework

VIATRA 2.0 Model Transformation Plug-in

VPM Metamodeling Core

Design toolchain

Source
model

Source
metamodel

Target
model

Target
metamodel

Xform. rules
(UML/QVT)

Xform engine
(ASM+GraTra)

Native
Source model

Native
Target model

The VIATRA 2.0 framework

20 DESEREC, 1st Training Workshop

Eclipse framework

VIATRA 2.0 Model Transformation Plug-in

VPM Metamodeling Core

The VIATRA 2.0 framework

Native tool

Native
Source model

Native
XForm Plugin

Native
Target model

Source
model

Source
metamodel

Target
model

Target
metamodel

Xform. rules
(UML/QVT)

Xform engine
(ASM+GraTra)
Meta XForm

Delayed by QVT
finalizationUnder development

21 DESEREC, 1st Training Workshop

VIATRA2 and Eclipse

Eclipse quick facts:

n Component-based (‘plugins’)
n Free & Open Source
n Multi-Purpose Development Framework

4 IDE, thin client, application, …
4A true platform in itself

n THE platform for tool integration today

VIATRA2: an official Eclipse Generative Modeling Tools
project

n Realization: a set of Eclipse plugins
n Integration with other Eclipse-based solutions is supported
n Extendability & extension mechanisms
n http://www.eclipse.org/gmt/ (soon to be updated)

http://www.eclipse.org/gmt/

22 DESEREC, 1st Training Workshop

Transformation development

P
lu

gi
n

ge
ne

ra
to

r

Transformation design time

Transformation runtime

23 DESEREC, 1st Training Workshop

Models, Model Manipulation and the ‘Last Mile’
Model management:
n Model space: Unified, global view of

models, metamodels and transformations
4Hierarchical graph model
4Complex type hierarchy
4Multilevel metamodeling

Model manipulation and transformations:
integration of two mathematically precise,
rule and pattern-based formalisms
n Graph patterns (GP): structural conditions
n Graph transformation rules (GT): elementary xform steps
n Abstract state machines (ASM): complex xform programs

Code generation:
n Special model transformations with
n Code templates and code formatters

24 DESEREC, 1st Training Workshop

Metamodeling Approach

VPM: Visual and Precise Metamodeling

n Simple, visual metamodel desing
n Precise semantics
n Multi-level metamodeling: arbitrary meta-level depth
n Simultaneous support of multiple modeling languages

25 DESEREC, 1st Training Workshop

VPM: Visual and Precise Metamodeling

MOF class + package
+ object
• container
• classifier
• constant
• object instance

MOF association + attribute
• Unidirectional
• Binary

26 DESEREC, 1st Training Workshop

VPM: Visual and Precise Metamodeling

Instantiation
(meta levels)

Containment hierarchy

Inheritance

VTML: VIATRA Textual Metamodeling Language

27 DESEREC, 1st Training Workshop

Example: Ecore Metamodel

entity(emf) {
entity(ecore) {
entity('Classifier');
entity('Class');
entity('Datatype');
relation('structuralFeature', 'Classifier',

'Classifier');
relation('attribute', 'Class', 'Datatype');
relation('reference', 'Class', 'Class');
relation('many_to_one', 'Class', 'Class');
relation('many_to_many', 'Class', 'Class');
supertypeOf('Classifier', 'Class');
supertypeOf('Classifier', 'Datatype');
supertypeOf('structuralFeature', 'attribute');
supertypeOf('structuralFeature', 'reference');
supertypeOf('reference', 'many_to_one');
supertypeOf('reference', 'many_to_many');

}
}

Entity

Relation

InheritanceInheritance

Containment

28 DESEREC, 1st Training Workshop

Example: UML Metamodel as Instance of Ecore

import emf;

entity(uml_class) {
entity(metamodel) {

ecore.'Class'('ModelElement');
ecore.'Class'('Classifier');
supertypeOf('ModelElement','Classifier');
ecore.'Class'('Class') {
ecore.attribute(name, 'Classifier', 'String');
ecore.attribute(isPersistent, 'Class', 'Bool');

}
supertypeOf('Classifier', 'Class');

ecore.many_to_one(parent, 'Class', 'Class');
ecore.many_to_many(attrs, 'Class',

'Attribute');
}

}

Metamodel
specific types

InstanceOfInstanceOf

29 DESEREC, 1st Training Workshop

Models, Model Manipulation and the ‘Last Mile’
Model management:
n Model space: Unified, global view of

models, metamodels and transformations
4Hierarchical graph model
4Complex type hierarchy
4Multilevel metamodeling

Model manipulation and transformations:
integration of two mathematically precise,
rule and pattern-based formalisms
n Graph patterns (GP): structural conditions
n Graph transformation rules (GT): elementary xform steps
n Abstract state machines (ASM): complex xform programs

Code generation:
n Special model transformations with
n Code templates and code formatters

VTML

VTCL

Architecture ready to
integrate alternative

transformation
languages

(via new interpreters)

Distinguishing feature:
Metatransformations
(rules that manipulate

rules as models)

Ongoing:
declarative

transformations
(description logic,

QVT)

30 DESEREC, 1st Training Workshop

Graph patterns
Graph Pattern
n Structural conditions that have to be
fulfilled by a part of the model space

Graph pattern matching
n A model (i.e. part of the model space)
can satisfy a graph pattern,
n if the pattern can be matched to a
subgraph of the model

n Note that we omit here the
‘fine detail’ (recursion, OR-patterns,
neg-pattern hierarchy,..)

Person
firstname:String
lastname:String

Man Woman

Family
familyName:String

members
*

parent mother
refines
parent

father
refines
parent

husband

wife

Daniel:Man Gergely:Man

Gyozo:Man Maria:Woman

f1:father

m1:mother

f2:father
m2:mother

X: Person B: Man

P: Person

P1:person P2:person

pattern brother(X,B)

check (X != B)

Instance Model

Pattern definition

matching

31 DESEREC, 1st Training Workshop

Graph Transformation Rules

Precondition
pattern

LHS
M: Man W:Woman

F1: Family

MB1:members

precondition pattern
lhs(M,W,F1,MB1,F2,MB2)

neg find
married

X

F2: Family

MB2:members

neg find
married

X

M: Man W:Woman

F1: Family

MB1:members

postcondition pattern
rhs(M,W,F1,MB1,F2,MB2,F)

F2: Family

MB4:members

F: Family

Postcondition
pattern
RHS

Three different kinds
n LHS + RHS
n LHS + actions (ASM, follows)
n Merged LHS-RHS (new, del annotations)

32 DESEREC, 1st Training Workshop

Abstract State Machines

ASM: high-level programming
language
nControl structure for xform
nIntegrated with GT rules

Examples
n update location = term;
n parallel {…} / seq {…}
n let var = term in rule;
n if (formula) rule1; else rule2;
n iterate rule;
n forall/choose variables

with formula do rule;
n forall/choose variables

apply gtrule do rule;

forall X below people.models,
B below people.models
with find brother(X, B) do seq {
print(name(X) + "->" + name(B));

}

let X = people.models.Varro1.Daniel,
Y = people.models.Gyapay1.Szilvia,
F = undef, F2 = undef in
choose Z below people.models
apply marry(X, Y, F) do seq {

rename(F, "Varro2");
move(F, people.models);
iterate
choose M below people.models,

W below people.models
apply marry(M, W, F2) do

move(F2, people.models);

33 DESEREC, 1st Training Workshop

Models, Model Manipulation and the ‘Last Mile’
Model management:
n Model space: Unified, global view of

models, metamodels and transformations
4Hierarchical graph model
4Complex type hierarchy
4Multilevel metamodeling

Model manipulation and transformations:
integration of two mathematically precise,
rule and pattern-based formalisms
n Graph patterns (GP): structural conditions
n Graph transformation rules (GT): elementary xform steps
n Abstract state machines (ASM): complex xform programs

Code generation:
n Special model transformations with
n Code templates and code formatters

VTML

VTCL

VTTL

Automatically
transformed to VTCL

34 DESEREC, 1st Training Workshop

Code templates

Code generation
nCode templates
nCode formatters

Code templates
nText block with references to GTASM
patterns, rules
nCompiled into GTASM programs with
prints
≈Velocity templates

Code formatters
nSplit output code into multiple files
nPretty printing

template printClass(in C) =
{
public class $C {
#(forall At,Typ with attrib(C,At,Typ) do seq{)
private $Typ $At;
#(})
}
}

// Generated
rule printClass(in C) = seq {

print("public class " + C + "{");
forall At,Typ with attrib(C,At,Typ)

do
seq {
print("private " + Typ + " " + At +

";");
}

print("}");
}

35 DESEREC, 1st Training Workshop

VIATRA Importers

Model import modules
n Specific to a tool version
n Eclipse plugins
n Can be easily customized, upgraded
n Can be installed/uninstalled separate from the core VIATRA2

framework

UML 1.x
n Importers for

4 IBM Rational Rose 2002
4 IBM Rational XDE 2003
4Sparx Systems Enterprise Architect 4.0

UML 2.0
n New metamodel
n Importer for Rational Software Architect 6.0

The step from
concrete to abstract

syntax!

Ease of extendability
was of priority

(small and easy to
use API)

36 DESEREC, 1st Training Workshop

Eclipse-based GUI

Graphical editing for
domain specific

languages – isolated
examples, generic

solution under
development

37 DESEREC, 1st Training Workshop

VIATRA as an Application Component

“VIATRA application”

nCustom UI above the general
framework
nContains more transformation
descriptions and metamodels
nThe control flow of transformations
can depend on user input
nExample: complex PIM-PSM
mapping

PIM
PIM

PIM

XML

CRD bound PI

???XML

PIL-SCADE
type map

???

Job + SA replication

(Feasibility check)

Job allocation

Generic wrapper
code generation

VIATRA
DECOS
Model
Store

Message
Scheduler

XML

XML

Partition
Scheduler

???

???

PSM

???

Marking

(CPMC)

Code
Information

???

38 DESEREC, 1st Training Workshop

Qualitative Fault Modeling,
Transformations and Resilient

Systems

39 DESEREC, 1st Training Workshop

Qualitative fault modeling

Basis: Architecture design

Metamodel-based fault modeling
n UML General Resource Model (GRM):

Resource types (active, passive, protected etc.),
Usage scenarios

n Operational faults are considered
n Faults are introduced here systematically

Common cause failures:
n Introduced by resource sharing

40 DESEREC, 1st Training Workshop

Applications

Origins: mid-nineties (York, TUB)
n A few qualitative values (good, faulty, early, late)

Applications:
n industrial models
n railway interlocking systems
n e-Business processes

Experiences:
n effective both in modelling and analysis (as briefly follows)

41 DESEREC, 1st Training Workshop

Basic idea of qualitative fault modeling Basic idea:
n keep only, whether the actual

and reference values are
identical

n non-deterministic modeling
4 IF-THEN-ELSE ð CHOOSE

Design
n frequently incomplete

specification
n preliminary estimation of fault

/ error effects
Analysis
n complexity problems

4 interpreted ~ 10120

4 uninterpreted ~ 101600

42 DESEREC, 1st Training Workshop

Architecture design

+op1()::qualitative()
-attr_11::qualitative : Class1 = good

Class1

+op_21()::qualitative()
-attr_12::qualitative : int = good

Class2

Resources (GRM)

Resource1
Resource2

«uses» «uses»

Resource_instance (state good/faulty)

Resource_manager

-ctrl*

-reacts*

Fault injector

Fault selection and activation

Part of a UML Profile

Model of the inter-actions
with resources via GRM

Insertion of (qualitative)
faults at the resources

Error propagation
through the scenarios

Qualitative fault modeling
is tried & tested – the
task is to integrate it with
MDD

Fault Modeling by GRM

43 DESEREC, 1st Training Workshop

Analysis of error propagation

Extension of the architectural model:
fault effects + error propagation rules

Checking high-level (abstract) operation
in the presence of anticipated faults
(fault simulation)

Estimating system properties:
n Coverage of fault tolerance techniques
n Testability, diagnosability of faults
n Potentially catastrophic fault effects

44 DESEREC, 1st Training Workshop

Dependability analysis

Basis: Architecture design (PSM)

Quantitative reliability/availability analysis:
n Comparison of alternatives
n Elimination of bottlenecks
n Sensitivity analysis

Qualitative dependability analysis:
n Rule-based prediction of faulty behavior

Design patterns for dependability
(redundancy management)

45 DESEREC, 1st Training Workshop

Formal verification of behavior

Basis: Behavioral model (control flow)
n Complex control algorithms
n Event driven, asynchronous operation
→ Exhaustive testing is infeasible

Classical reachability analysis:
n Temporal logic model checking

(general and application-specific requirements)

Additional improvements:
n Semi-decision techniques

(handling large state spaces by abstraction)
Conclusion: many (classic)
V&V activities meaningful in
the DESEREC context; to the
least tool & process integration
can benefit from transformation
support

46 DESEREC, 1st Training Workshop

Live Tool Demonstration

